Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Methods Mol Biol ; 2306: 215-225, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954949

RESUMO

To understand the interplay of lipids between Leishmania promastigotes, amastigotes, and vertebrate host cells, a robust method for cultivating Leishmania parasites, lipid extraction, and shotgun lipidomic analysis with loop injection is described. This book chapter provides the step-by-step workflow to guide readers from sample preparation to the global lipid analysis by multiple stage mass spectrometry with high resolution and tandem quadrupole mass spectrometric approaches toward studying the metabolomic roles that lipids may play in Leishmania parasite infections.


Assuntos
Leishmania/química , Lipidômica/métodos , Lipídeos/análise , Lipídeos/química , Estrutura Molecular , Espectrometria de Massas em Tandem , Fluxo de Trabalho
2.
Protein Expr Purif ; 177: 105750, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920041

RESUMO

Cutaneous leishmaniasis is a parasitic and neglected tropical disease transmitted by the bites of sandflies. The emergence of cutaneous leishmaniasis in areas of war, conflict, political instability, and climate change has prompted efforts to develop a preventive vaccine. One vaccine candidate antigen is PpSP15, a 15 kDa salivary antigen from the sandfly Phlebotomus papatasi that facilitates the infection of the Leishmania parasite and has been shown to induce parasite-specific cell-mediated immunity. Previously, we developed a fermentation process for producing recombinant PpSP15 in Pichia pastoris and a two-chromatographic-step purification process at 100 mL scale. Here we expand the process design to the 10 L scale and examine its reproducibility by performing three identical process runs, an essential transition step towards technology transfer for pilot manufacture. The process was able to reproducibly recover 81% of PpSP15 recombinant protein with a yield of 0.75 g/L of fermentation supernatant, a purity level of 97% and with low variance among runs. Additionally, a freeze-thaw stability study indicated that the PpSP15 recombinant protein remains stable after undergoing three freeze-thaw cycles, and an accelerated stability study confirmed its stability at 37 °C for at least one month. A research cell bank for the expression of PpSP15 was generated and fully characterized. Collectively, the cell bank and the production process are ready for technology transfer for future cGMP pilot manufacturing.


Assuntos
Proteínas de Insetos/imunologia , Leishmania/imunologia , Vacinas contra Leishmaniose/imunologia , Phlebotomus/química , Proteínas e Peptídeos Salivares/imunologia , Animais , Clonagem Molecular , Feminino , Fermentação , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Leishmania/química , Vacinas contra Leishmaniose/genética , Vacinas contra Leishmaniose/metabolismo , Leishmaniose Cutânea/prevenção & controle , Peso Molecular , Phlebotomus/fisiologia , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo
3.
Carbohydr Polym ; 237: 116120, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32241437

RESUMO

Leishmania is an obligate intracellular pathogen that invades phagocytic host cells. Due to its high morbidity and mortality rates, leishmaniasis attracts significant attention. The disease, which is caused by Leishmania parasites, is distributed worldwide, particularly among developing communities, and causes fatal complications if not treated expediently. Unfortunately, the existing treatments are not preventive and do not impede Leishmania infection. Many drugs available for leishmaniasis are becoming less effective due to emerging resistance in some Leishmania species. Other drugs have drawbacks such as low cost-effectiveness, toxicity, and side effects. The World Health Organization (WHO) considers leishmaniasis to be a major public health problem and suggests that the best prevention is to develop a vaccine for this dangerous disease. In this review, we focus on the unique components of lipophosphoglycan (LPG), a component of the Leishmania cell wall, particularly [Galp(1 → 4)-ß-[Manp-(1 → 2)-α-Manp-(1 → 2)-α]-Manp] in the cryptic tetrasaccharide cap, and on synthetic approaches as a potent candidate for a leishmaniasis vaccine.


Assuntos
Glicoproteínas/química , Glicoesfingolipídeos/química , Leishmania/química , Leishmaniose/parasitologia , Humanos , Leishmaniose/prevenção & controle , Vacinas contra Leishmaniose
4.
Comb Chem High Throughput Screen ; 23(6): 477-503, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32067612

RESUMO

BACKGROUND: The parasitic protozoal infections leishmaniasis, human African trypanosomiasis, and Chagas disease are neglected tropical diseases that pose serious health risks for much of the world's population. Current treatment options suffer from limitations, but plantderived natural products may provide economically advantageous therapeutic alternatives. Several germacranolide sesquiterpenoids have shown promising antiparasitic activities, but the mechanisms of activity have not been clearly established. OBJECTIVE: The objective is to use in silico screening of known antiparasitic germacranolides against recognized protozoal protein targets in order to provide insight into the molecular mechanisms of activity of these natural products. METHODS: Conformational analyses of the germacranolides were carried out using density functional theory, followed by molecular docking. A total of 88 Leishmania protein structures, 86 T. brucei protein structures, and 50 T. cruzi protein structures were screened against 27 antiparasitic germacranolides. RESULTS: The in-silico screening has revealed which of the protein targets of Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are preferred by the sesquiterpenoid ligands.


Assuntos
Antiparasitários/farmacologia , Produtos Biológicos/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Sesquiterpenos de Germacrano/farmacologia , Antiparasitários/química , Produtos Biológicos/química , Teoria da Densidade Funcional , Avaliação Pré-Clínica de Medicamentos , Leishmania/química , Leishmania/efeitos dos fármacos , Ligantes , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Conformação Molecular , Simulação de Acoplamento Molecular , Sesquiterpenos de Germacrano/química , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/química , Trypanosoma cruzi/efeitos dos fármacos
5.
ACS Infect Dis ; 5(12): 2136-2147, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31600437

RESUMO

Cutaneous leishmaniasis, the most common form of leishmaniasis, is endemic in several regions of the world, and if not treated properly, it can cause disfiguring scars on the skin. Leishmania spp. infection causes an inflammatory response in its host, and it modulates the host metabolism differently depending on the Leishmania species. Since Leishmania spp. has begun to develop resistance against current therapies, we believe efforts to identify new possibilities for treatment are critical for future control of the disease. Proteomics approaches such as isobaric labeling yield accurate relative quantification of protein abundances and, when combined with chemometrics/statistical analysis, provide robust information about protein modulation across biological conditions. Using a mass spectrometry-based proteomics approach and tandem mass tag labeling, we have investigated protein modulation in murine macrophages (in vitro model) and skin biopsies after exposure to Leishmania spp. (in vivo murine model). Infections induced by L. amazonensis (endemic in the New World) and L. major (endemic in the Old World) were compared to an inflammation model to search for Leishmania-specific and nonspecific protein modulation in the host. After protein extracts obtained from in vitro and in vivo experiments were digested, the resulting peptides were labeled with isobaric tags and analyzed by liquid chromatography-MS (LC-MS). Several proteins that were found to be changed upon infection with Leishmania spp. provide interesting candidates for further investigation into disease mechanism and development of possible immunotherapies.


Assuntos
Interações Hospedeiro-Parasita , Leishmania/química , Leishmania/fisiologia , Macrófagos/parasitologia , Proteoma/análise , Espectrometria de Massas em Tandem , Animais , Modelos Animais de Doenças , Feminino , Leishmania/genética , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Proteômica
6.
J Biol Chem ; 294(34): 12815-12825, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31292194

RESUMO

J-DNA-binding protein 1 (JBP1) contributes to the biosynthesis and maintenance of base J (ß-d-glucosyl-hydroxymethyluracil), an epigenetic modification of thymidine (T) confined to pathogenic protozoa such as Trypanosoma and Leishmania JBP1 has two known functional domains: an N-terminal T hydroxylase (TH) homologous to the 5-methylcytosine hydroxylase domain in TET proteins and a J-DNA-binding domain (JDBD) that resides in the middle of JBP1. Here, we show that removing JDBD from JBP1 results in a soluble protein (Δ-JDBD) with the N- and C-terminal regions tightly associated together in a well-ordered structure. We found that this Δ-JDBD domain retains TH activity in vitro but displays a 15-fold lower apparent rate of hydroxylation compared with JBP1. Small-angle X-ray scattering (SAXS) experiments on JBP1 and JDBD in the presence or absence of J-DNA and on Δ-JDBD enabled us to generate low-resolution three-dimensional models. We conclude that Δ-JDBD, and not the N-terminal region of JBP1 alone, is a distinct folding unit. Our SAXS-based model supports the notion that binding of JDBD specifically to J-DNA can facilitate T hydroxylation 12-14 bp downstream on the complementary strand of the J-recognition site. We postulate that insertion of the JDBD module into the Δ-JDBD scaffold during evolution provided a mechanism that synergized J recognition and T hydroxylation, ensuring inheritance of base J in specific sequence patterns following DNA replication in kinetoplastid parasites.


Assuntos
DNA de Protozoário/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Leishmania/química , Oxigenases de Função Mista/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trypanosoma/química , Sítios de Ligação , DNA de Protozoário/química , Proteínas de Ligação a DNA/genética , Leishmania/metabolismo , Oxigenases de Função Mista/química , Modelos Moleculares , Conformação Proteica , Proteínas de Protozoários/genética , Trypanosoma/metabolismo
7.
Food Funct ; 10(6): 3172-3180, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31134235

RESUMO

Quercetin related compounds were tested against Leishmania amazonensis arginase, a potential target for the development of new approaches in treating leishmaniasis. The IC50 and kinetic analysis were performed to determine the dissociation constant Ki and the inhibition mechanism of the parasite's arginase enzyme. The best arginase inhibition was obtained from taxifolin (dihydroquercetin) with IC50 = 1.6 ± 0.1 µM. This study showed for the first time that rutin (IC50 = 10.4 ± 0.8 µM), and human metabolite quercetin-3-O-glucuronide (IC50 = 8.2 ± 0.4 µM), target L. amazonensis arginase. In addition, computational studies applying molecular docking simulations were performed to gain insight into the molecular basis for arginase inhibition by the competitive inhibitors. Our results suggest that these compounds could be exploited to develop new approaches for treating leishmaniasis through molecular nutrition supplement in a drug-based therapy.


Assuntos
Antiprotozoários/química , Arginase/antagonistas & inibidores , Leishmania/enzimologia , Polifenóis/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Quercetina/análogos & derivados , Quercetina/química , Rutina/química , Antiprotozoários/farmacologia , Arginase/química , Humanos , Cinética , Leishmania/química , Leishmania/efeitos dos fármacos , Leishmania/crescimento & desenvolvimento , Leishmaniose/parasitologia , Simulação de Acoplamento Molecular , Polifenóis/química , Proteínas de Protozoários/química , Quercetina/farmacologia , Rutina/farmacologia
8.
Molecules ; 24(7)2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30934998

RESUMO

Leishmaniasis is a neglected tropical disease caused by members of the Leishmania genus of parasitic protozoa that cause different clinical manifestations of the disease. Current treatment options for the cutaneous disease are limited due to severe side effects, poor efficacy, limited availability or accessibility, and developing resistance. Essential oils may provide low cost and readily available treatment options for leishmaniasis. In-vitro screening of a collection of 52 commercially available essential oils has been carried out against promastigotes of Leishmania amazonensis. In addition, cytotoxicity has been determined for the essential oils against mouse peritoneal macrophages in order to determine selectivity. Promising essential oils were further screened against intracellular L. amazonensis amastigotes. Three essential oils showed notable antileishmanial activities: frankincense (Boswellia spp.), coriander (Coriandrum sativum L.), and wintergreen (Gualtheria fragrantissima Wall.) with IC50 values against the amastigotes of 22.1 ± 4.2, 19.1 ± 0.7, and 22.2 ± 3.5 µg/mL and a selectivity of 2, 7, and 6, respectively. These essential oils could be explored as topical treatment options for cutaneous leishmaniasis.


Assuntos
Antiprotozoários/química , Leishmania/química , Óleos Voláteis/química , Animais , Antiprotozoários/farmacologia , Boswellia/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Coriandrum/química , Avaliação Pré-Clínica de Medicamentos/métodos , Concentração Inibidora 50 , Leishmaniose Cutânea/metabolismo , Macrófagos Peritoneais/química , Camundongos Endogâmicos BALB C , Óleos Voláteis/farmacologia
9.
Parasitology ; 145(14): 1938-1948, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29806570

RESUMO

Oligosaccharides are broadly present on Leishmania cell surfaces. They can be useful for the leishmaniases diagnosis and also helpful in identifying new cell markers for the disease. The disaccharide Galα1-3Galß is the immunodominant saccharide in Leishmania cell surface and is the unique non-reducing terminal glycosphingolipids structure recognized by anti-α-Gal. This study describes an enzyme-linked immunosorbent assay (ELISA) used to measure serum levels of anti-α-galactosyl (α-Gal) antibodies in patients with cutaneous leishmaniasis (CL). Optimal ELISA conditions were established and two neoglycoproteins (NGP) containing the Galα1-3Gal terminal fraction (Galα1-3Galß1-4GlcNAc-HAS and Galα1-3Gal-HAS) and one Galα1-3Gal NGP analogue (Galα1-3Galß1-3GlcNAc-HAS) were used as antigens. Means of anti-α-Gal antibody titres of CL patients were significantly higher (P < 0.05) than the healthy individuals for all NGPs tested. Sensitivity and specificity of all NGPs ranged from 62.2 to 78.4% and 58.3 to 96.7%, respectively. In conclusion, the NGPs can be used for CL diagnosis.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/química , Glicoproteínas/sangue , Glicoproteínas/química , Leishmania/química , Leishmaniose Cutânea/diagnóstico , Estudos de Coortes , Dissacarídeos/química , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Feminino , Humanos , Leishmaniose Cutânea/sangue , Masculino , Trissacarídeos/química
10.
Infect Genet Evol ; 61: 197-206, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29626675

RESUMO

The Calcitonin-Like Receptor (CLR) belongs to the classical seven-transmembrane segment molecules coupled to heterotrimeric G proteins. Its pharmacology depends on the simultaneous expression of the so-called Receptor Activity Modifier Proteins (RAMP-) -1, -2 and -3. RAMP-associated proteins modulate glycosylation and cellular traffic of CLR, therefore determining its pharmacodynamics. In higher eukaryotes, the complex formed by CLR and RAMP-1 is more akin to bind Calcitonin Gene-Related Peptide (CGRP), whereas those formed by CLR and RAMP-2 or RAMP-3, bind preferentially Adrenomedullin (AM). In lower eukaryotes, RAMPs, or any homologous protein, have not been identified until now. Herein we demonstrated a negative chemotactic response elicited by CGRP (10-9 and 10-8 M) and AM (10-9 to 10-5 M). Whether or not this response is receptor mediated should be verified, as well as the expression of a 24 kDa band in Leishmania, recognized by western blot analysis by the use of (human-)-RAMP-2 antibodies as detection probes. Queries with human RAMP-2 and RAMP-3 protein sequences in blastp against Leishmania (Viannia) braziliensis predicted proteome, allowed us to detect two sequence alignments in the parasite: A RAMP-2-aligned sequence corresponding to Leishmania folylpolyglutamate synthase (FPGS), and a RAMP-3 aligned protein, a hypothetical Leishmania protein with yet unknown function. The presence of homologous of these proteins was described in-silico in other members of the Trypanosomatidae. These preliminary and not yet complete data suggest the feasibility that both CGRP and Adrenomedullin activities may be regulated by homologs of RAMP- (-2) and (-3) in these parasites.


Assuntos
Adrenomedulina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Leishmania , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Sequência de Aminoácidos , Quimiotaxia/fisiologia , Simulação por Computador , Humanos , Leishmania/química , Leishmania/metabolismo , Leishmania/fisiologia , Estágios do Ciclo de Vida/fisiologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/química , Proteína 3 Modificadora da Atividade de Receptores/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
11.
Parasitology ; 145(3): 355-370, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29039273

RESUMO

The species Phytomonas serpens is known to express some molecules displaying similarity to those described in trypanosomatids pathogenic to humans, such as peptidases from Trypanosoma cruzi (cruzipain) and Leishmania spp. (gp63). In this work, a population of P. serpens resistant to the calpain inhibitor MDL28170 at 70 µ m (MDLR population) was selected by culturing promastigotes in increasing concentrations of the drug. The only relevant ultrastructural difference between wild-type (WT) and MDLR promastigotes was the presence of microvesicles within the flagellar pocket of the latter. MDLR population also showed an increased reactivity to anti-cruzipain antibody as well as a higher papain-like proteolytic activity, while the expression of calpain-like molecules cross-reactive to anti-Dm-calpain (from Drosophila melanogaster) antibody and calcium-dependent cysteine peptidase activity were decreased. Gp63-like molecules also presented a diminished expression in MDLR population, which is probably correlated to the reduction in the parasite adhesion to the salivary glands of the insect vector Oncopeltus fasciatus. A lower accumulation of Rhodamine 123 was detected in MDLR cells when compared with the WT population, a phenotype that was reversed when MDLR cells were treated with cyclosporin A and verapamil. Collectively, our results may help in the understanding of the roles of calpain inhibitors in trypanosomatids.


Assuntos
Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Peptídeo Hidrolases/efeitos dos fármacos , Trypanosomatina/efeitos dos fármacos , Calpaína/antagonistas & inibidores , Calpaína/química , Calpaína/efeitos dos fármacos , Calpaína/genética , Cisteína Endopeptidases/imunologia , Resistência a Medicamentos , Glicoproteínas/farmacologia , Leishmania/química , Leishmania/fisiologia , Proteínas de Membrana Transportadoras/genética , Peptídeo Hidrolases/genética , Proteínas de Protozoários/imunologia , Trypanosoma cruzi/química , Trypanosoma cruzi/fisiologia , Trypanosomatina/genética
12.
Int J Med Microbiol ; 308(1): 68-76, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28927848

RESUMO

Intracellular pathogens invade their host cells and replicate within specialized compartments. In turn, the host cell initiates a defensive response trying to kill the invasive agent. As a consequence, intracellular lifestyle implies morphological and physiological changes in both pathogen and host cell. Leishmania spp. are medically important intracellular protozoan parasites that are internalized by professional phagocytes such as macrophages, and reside within the parasitophorous vacuole inhibiting their microbicidal activity. Whereas the proteome of the extracellular promastigote form and the intracellular amastigote form have been extensively studied, the constituents of Leishmania's intracellular niche, an endolysosomal compartment, are not fully deciphered. In this review we discuss protocols to purify such compartments by means of an illustrating example to highlight generally relevant considerations and innovative aspects that allow purification of not only the intracellular parasites but also the phagosomes that harbor them and analyze the latter by gel free proteomics.


Assuntos
Leishmania/metabolismo , Macrófagos/parasitologia , Fagossomos/química , Proteômica , Animais , Humanos , Leishmania/química , Leishmania/crescimento & desenvolvimento , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Lisossomos/química , Lisossomos/metabolismo , Lisossomos/parasitologia , Macrófagos/metabolismo , Fagossomos/metabolismo , Fagossomos/parasitologia , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo
13.
Parasit Vectors ; 10(1): 608, 2017 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-29246180

RESUMO

BACKGROUND: Lipophosphoglycan (LPG) is a dominant surface molecule of Leishmania promastigotes. Its species-specific polymorphisms are found mainly in the sugars that branch off the conserved Gal(ß1,4)Man(α1)-PO4 backbone of repeat units. Leishmania amazonensis is one of the most important species causing human cutaneous leishmaniasis in the New World. Here, we describe LPG intraspecific polymorphisms in two Le. amazonensis reference strains and their role during the development in three sand fly species. RESULTS: Strains isolated from Lutzomyia flaviscutellata (PH8) and from a human patient (Josefa) displayed structural polymorphism in the LPG repeat units, possessing side chains with 1 and 2 ß-glucose or 1 to 3 ß-galactose, respectively. Both strains successfully infected permissive vectors Lutzomyia longipalpis and Lutzomyia migonei and could colonize their stomodeal valve and differentiate into metacyclic forms. Despite bearing terminal galactose residues on LPG, Josefa could not sustain infection in the restrictive vector Phlebotomus papatasi. CONCLUSIONS: LPG polymorphisms did not affect the ability of Le. amazonensis to develop late-stage infections in permissive vectors. However, the non-establishment of infection in Ph. papatasi by Josefa strain suggested other LPG-independent factors in this restrictive vector.


Assuntos
Glicoesfingolipídeos/análise , Leishmania/química , Leishmania/crescimento & desenvolvimento , Psychodidae/parasitologia , Animais , Humanos , Leishmania/isolamento & purificação
14.
Structure ; 25(12): 1785-1794.e3, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29107485

RESUMO

Kinetoplastids are potentially lethal protozoan pathogens affecting more than 20 million people worldwide. There is a critical need for more specific targets for the development of safer anti-kinetoplastid therapeutic molecules that can replace the scarce and highly cytotoxic current drugs. The kinetoplastid ribosome represents a potential therapeutic target due to its relative structural divergence when compared with its human counterpart. However, several kinetoplastid-specific ribosomal features remain uncharacterized. Here, we present the near-atomic cryoelectron microscopy structure of a novel bona fide kinetoplastid-specific ribosomal (r-) protein (KSRP) bound to the ribosome. KSRP is an essential protein located at the solvent face of the 40S subunit, where it binds and stabilizes kinetoplastid-specific domains of rRNA, suggesting its role in ribosome integrity. KSRP also interacts with the r-protein eS6 at a region that is only conserved in kinetoplastids. The kinetoplastid-specific ribosomal environment of KSRP provides a promising target for the design of safer anti-kinetoplastidian drugs.


Assuntos
Proteínas de Protozoários/química , Proteínas Ribossômicas/química , Sítios de Ligação , Microscopia Crioeletrônica , Leishmania/química , Ligação Proteica , Proteínas de Protozoários/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Trypanosoma cruzi/química
15.
Biomed Pharmacother ; 95: 1369-1374, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28946184

RESUMO

Leishmaniasis is a major public infectious disease caused by the genus Leishmania. No effective drug or vaccination strategy for leishmaniasis has been designed yet. Several intracellular Leishmania antigens have been recognized to serve in vaccination, ensuring long-lasting protection against Leishmania infection. Lipophosphoglican 3 (LPG3) as a member of the heat shock protein 90 family involves in the synthesis of lipophosphoglycan (LPG) and implicates in parasite virulence. Regarding the immunological properties of LPG3 particularly its N-terminal fragment, it would be considered as a favourable adjuvant in Leishmania vaccination.


Assuntos
Glicoesfingolipídeos/química , Glicoesfingolipídeos/imunologia , Leishmania/química , Leishmania/imunologia , Imunidade Adaptativa , Animais , Proteínas de Choque Térmico/metabolismo , Humanos , Imunidade Inata , Vacinação
16.
PLoS One ; 12(3): e0173922, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28301553

RESUMO

BACKGROUND: The PCR assays usually employed for Leishmania diagnosis does not simultaneously detect a constitutive gene that would certify the viability of the DNA sample. We present a multiplex PCR approach for the simultaneous diagnosis of the Leishmania sp. kDNA fragment and a catalytic domain segment of a conserved region of the mammalian gapdh gene. METHODOLOGY: The proposed multiplex protocol was designed through in silico PCR. The annealing temperature, concentration of primer pairs, number of cycles, distinct polymerase enzymes and premix kit were defined to achieve an optimal reaction. The DNA detection sensitivity was tested with different concentrations of known L. tropica DNA, and the reproducibility of the assay was confirmed using samples from 106 wild mammals that were previously subject to Leishmania sp. kDNA analysis through singleplex reactions. PRINCIPAL FINDINGS: The following optimal conditions were established: 95°C for 1 min followed by 30 cycles of 95°C for 30 s, 61°C for 30 s, and 72°C for 30 s and a final extension at 72°C for 1 min. The multiplex PCR system was capable of detecting 0.1 ng of L. tropica diluted in 100 ng of mammalian DNA. Of 51 kDNA samples that were previously found to be positive, 45 (88.2%) were positive for both targets, two were positive only for kDNA and four were negative for both. Of 55 kDNA samples that were previously identified as negative, 38 (69.1%) were positive for gapdh whereas the other 17 were negative for both targets. CONCLUSIONS/SIGNIFICANCE: The proposed multiplex PCR system allows the simultaneous detection of the gapdh gene and Leishmania sp. kDNA in tissue samples derived from distinct wild mammal species. The amplification of the gapdh mammalian gene in the same reaction ensures the quality and viability of the DNA in the sample, eliminating the possibility of false-negative results that would impair an accurate description of the infection rates in a given population.


Assuntos
DNA de Cinetoplasto/genética , Genes Essenciais , Gliceraldeído-3-Fosfato Desidrogenases/genética , Leishmania/genética , Mamíferos/parasitologia , Reação em Cadeia da Polimerase Multiplex/métodos , Animais , Animais Selvagens/parasitologia , Sequência de Bases , Leishmania/química , Reação em Cadeia da Polimerase Multiplex/normas , Filogenia , Homologia de Sequência do Ácido Nucleico
17.
J Phys Chem B ; 121(8): 1824-1834, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28182432

RESUMO

KMP-11 is a small protein that is believed to control the overall bilayer pressure of the Leishmania parasite. Recent results have suggested that membrane binding and the presence of cholesterol affect the efficacy of Leishmanial infection, in which KMP-11 plays an important role. Nevertheless, there exists no systematic study of membrane interaction with KMP-11 either in the absence or presence of cholesterol. In this article, we investigated the interaction between KMP-11 and phospholipid membranes using an unsaturated (PC 18:1; 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)) and saturated (PC 12:0; 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)) lipid as membrane mimics. Additionally, we studied the effect of cholesterol on the protein-membrane interaction. Steady-state as well as time-resolved fluorescence spectroscopy, isothermal titration calorimetry (ITC), and ζ-potential measurements were used for the determination of the binding constants for the wild-type (WT) and single-site tryptophan mutants. Single-site tryptophan mutants were designed to make sure that the tryptophan residues sample different surface exposures in different mutants. In the absence of cholesterol, the membrane-binding affinities of the partially exposed and buried tryptophan mutants (Y5W and Y48W, respectively) were found to be greater than those of the WT protein. In the presence of cholesterol, the binding constants of the WT and Y48W mutant were found to decrease with an increase in cholesterol concentration. This was in contrast to that in the Y5W and F77W mutants, in which the binding constants increased on adding cholesterol. The present study highlights the interplay among the conformational architecture of a protein, its interaction with the membrane, and membrane composition in modulating the survival of a Leishmania parasite inside host macrophages.


Assuntos
Colesterol/metabolismo , Leishmania/fisiologia , Leishmaniose/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Protozoários/metabolismo , Triptofano/metabolismo , Interações Hospedeiro-Parasita , Humanos , Leishmania/química , Leishmania/genética , Leishmania/parasitologia , Leishmaniose/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Modelos Moleculares , Mutação Puntual , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Triptofano/química , Triptofano/genética
18.
Genome Biol ; 18(1): 23, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28137275

RESUMO

BACKGROUND: 5-Hydroxymethyluracil (5hmU) is a thymine base modification found in the genomes of a diverse range of organisms. To explore the functional importance of 5hmU, we develop a method for the genome-wide mapping of 5hmU-modified loci based on a chemical tagging strategy for the hydroxymethyl group. RESULTS: We apply the method to generate genome-wide maps of 5hmU in the parasitic protozoan Leishmania sp. In this genus, another thymine modification, 5-(ß-glucopyranosyl) hydroxymethyluracil (base J), plays a key role during transcription. To elucidate the relationship between 5hmU and base J, we also map base J loci by introducing a chemical tagging strategy for the glucopyranoside residue. Observed 5hmU peaks are highly consistent among technical replicates, confirming the robustness of the method. 5hmU is enriched in strand switch regions, telomeric regions, and intergenic regions. Over 90% of 5hmU-enriched loci overlapped with base J-enriched loci, which occurs mostly within strand switch regions. We also identify loci comprising 5hmU but not base J, which are enriched with motifs consisting of a stretch of thymine bases. CONCLUSIONS: By chemically detecting 5hmU we present a method to provide a genome-wide map of this modification, which will help address the emerging interest in the role of 5hmU. This method will also be applicable to other organisms bearing 5hmU.


Assuntos
Mapeamento Cromossômico/métodos , DNA de Protozoário/genética , Leishmania/genética , Pentoxil (Uracila)/análogos & derivados , DNA de Protozoário/química , Glucosídeos/química , Leishmania/química , Pentoxil (Uracila)/química , Uracila/análogos & derivados , Uracila/química
19.
Biomedica ; 36(0): 37-44, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-27622623

RESUMO

INTRODUCTION: Leishmaniasis is highly prevalent in Colombia, where at least six different species can cause disease of varying clinical presentations in humans. The identification of the infecting species is quite important for prognosis, therapeutics and epidemiology. Different techniques with variable discriminatory power have been used for the identification.  OBJECTIVE: To carry out the molecular identification of Leishmania species through the amplification of a fragment of the hsp70 gene.  MATERIALS AND METHODS: Molecular amplification of the hsp70 gene fragment (PCR-hsp70) followed by restriction fragment length polymorphism analysis (RFLP) was done for identification purposes using DNA from 81 clinical isolates of Leishmania.  RESULTS: A single amplicon was obtained for all samples analyzed. The enzymatic restrictions of the 81 PCR products identified 70 with a banding pattern corresponding to L. braziliensis with two different patterns (62 and eight isolates, respectively), nine isolates compatible with L. panamensis and two with L. guyanensis. The geographical origin of the isolates is consistent with previous reports about the distribution of the corresponding species in Colombia.  CONCLUSIONS: The PCR-hsp70/RFLP technique used is a valid tool for the identification of Leishmania species isolated from clinical samples of patients in Colombia, which may also be applicable to the study of strains obtained from vectors and reservoirs with epidemiological significance.


Assuntos
DNA de Protozoário/análise , Proteínas de Choque Térmico HSP70/genética , Leishmania/química , Reação em Cadeia da Polimerase/métodos , Animais , Colômbia , DNA de Protozoário/química , Proteínas de Choque Térmico HSP70/química , Humanos , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/parasitologia , Polimorfismo de Fragmento de Restrição
20.
J Comput Aided Mol Des ; 30(7): 541-52, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27438595

RESUMO

The trypanosomatid protozoa Leishmania is endemic in ~100 countries, with infections causing ~2 million new cases of leishmaniasis annually. Disease symptoms can include severe skin and mucosal ulcers, fever, anemia, splenomegaly, and death. Unfortunately, therapeutics approved to treat leishmaniasis are associated with potentially severe side effects, including death. Furthermore, drug-resistant Leishmania parasites have developed in most endemic countries. To address an urgent need for new, safe and inexpensive anti-leishmanial drugs, we utilized the IBM World Community Grid to complete computer-based drug discovery screens (Drug Search for Leishmaniasis) using unique leishmanial proteins and a database of 600,000 drug-like small molecules. Protein structures from different Leishmania species were selected for molecular dynamics (MD) simulations, and a series of conformational "snapshots" were chosen from each MD trajectory to simulate the protein's flexibility. A Relaxed Complex Scheme methodology was used to screen ~2000 MD conformations against the small molecule database, producing >1 billion protein-ligand structures. For each protein target, a binding spectrum was calculated to identify compounds predicted to bind with highest average affinity to all protein conformations. Significantly, four different Leishmania protein targets were predicted to strongly bind small molecules, with the strongest binding interactions predicted to occur for dihydroorotate dehydrogenase (LmDHODH; PDB:3MJY). A number of predicted tight-binding LmDHODH inhibitors were tested in vitro and potent selective inhibitors of Leishmania panamensis were identified. These promising small molecules are suitable for further development using iterative structure-based optimization and in vitro/in vivo validation assays.


Assuntos
Antiprotozoários/química , Leishmaniose/tratamento farmacológico , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Proteínas de Protozoários/química , Bibliotecas de Moléculas Pequenas/química , Antiprotozoários/uso terapêutico , Di-Hidro-Orotato Desidrogenase , Humanos , Leishmania/química , Leishmania/efeitos dos fármacos , Leishmaniose/parasitologia , Ligantes , Simulação de Dinâmica Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas de Protozoários/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/uso terapêutico , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...